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and a particular topological term. The gauge groups typically include hidden symmetries

that are not among the target-space isometries of the ungauged theory. The gaugings con-

structed in this paper are described group-theoretically in terms of a constant embedding

tensor subject to a number of constraints which parametrizes the different theories and

entirely encodes the gauged Lagrangian.

The prime example is the bosonic sector of the maximally supersymmetric theory whose

ungauged version admits an affine e9 global symmetry algebra. The various parameters

(related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.)

which characterize the possible gaugings, combine into an embedding tensor transforming

in the basic representation of e9. This yields an infinite-dimensional class of maximally

supersymmetric theories in two dimensions. We work out and discuss several examples of

higher-dimensional origin which can be systematically analyzed using the different gradings

of e9.
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1. Introduction

One of the most intriguing features of extended supergravity theories is the exceptional

global symmetry structure they exhibit upon dimensional reduction [1]. Eleven-dimensional

supergravity when compactified on a d-torus T d gives rise to an (11−d)-dimensional maximal

supergravity with the exceptional global symmetry group Ed(d) and Abelian gauge group

U(1)q , where q is the dimension of some (typically irreducible) representation of Ed(d) in

which the vector fields transform. The only known supersymmetric deformations of these

theories are the so-called gaugings in which a (typically non-Abelian) subgroup of Ed(d)

is promoted to a local gauge group by coupling its generators to a subset of the q vector
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fields. The resulting theories exhibit interesting properties such as mass-terms for the

fermion fields and a scalar potential that provides masses for the scalar fields and may

support de Sitter and Anti-de Sitter ground states of the theory [2]. Recently, gauged

supergravities have attracted particular interest in the context of non-geometric and flux

compactifications [3] where they describe the resulting low-energy effective theories and

in particular allow to compute the effective scalar potentials induced by particular flux

configurations.

A systematic approach to the construction of gauged supergravity theories has been

set up with the group-theoretical framework of [4, 5]. Gaugings are defined by a constant

embedding tensor that transforms in a particular representation of the global symmetry

group Ed(d). It is subject to a number of constraints and entirely parametrizes the gauged

Lagrangian. E.g. in the context of flux compactifications, all possible higher-dimensional

(p-form, geometrical, and non-geometrical) flux components whose presence in the com-

pactification induces a deformation of the low-dimensional theory can be identified among

the components of the embedding tensor. Once the universal form of the gauged Lagrangian

is known for generic embedding tensor, this reduces the construction of any particular

example to a simple group-theoretical exercise.1 Moreover, since the embedding tensor

combines the flux components of various higher-dimensional origin into a single multiplet

of the U-duality group Ed(d), this formulation allows to directly identify the transformation

behavior of particular flux components under the action of the duality groups. In particu-

lar, this allows to straightforwardly extend the analysis of the effective theories beyond the

region in which the parameters have a simple perturbative or geometric interpretation.

Gaugings of two-dimensional maximal supergravity (d = 9) have not been studied

systematically so far. Yet, this case is particularly interesting, as the global symmetry

algebra of the ungauged maximal theory is the infinite-dimensional ĝ = e9(9), the affine

extension of the exceptional algebra g = e8(8), and the resulting structures are extremely

rich. The realization of the affine symmetry on the physical fields requires the introduction

of an infinite tower of dual scalar fields, defined on-shell by a set of first order differential

equations. Consequently, these symmetries act nonlinearly, nonlocally and are symmetries

of the equations of motion only. As a generic feature of two-dimensional gravity theories

obtained by dimensional reduction, the infinite-dimensional global symmetry algebra is a

manifestation of the underlying integrable structure of the theory [6 – 10]. In view of the

above discussion one may expect that the various parameters characterizing the different

higher-dimensional compactifications join into a single infinite-dimensional multiplet of

the affine algebra which accordingly parametrizes the generic gauged Lagrangian in two

dimensions. We confirm this picture in the present paper. The corresponding multiplet is

the basic representation of e9(9).

Apart from its intriguing mathematical structure, there are two features of two-

dimensional supergravity which render the construction of gaugings somewhat more del-

icate than in higher dimensions. First, the overwhelming part of the affine symmetries

1Still, the explicit calculation of the various couplings from the closed formulas may pose a considerable

task.
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present in the two-dimensional ungauged theory, is of the hidden type and in particular

on-shell. Only the zero-modes g of the affine algebra ĝ are realized as target-space isome-

tries of the two-dimensional scalar sigma-model and thus as off-shell symmetries of the

Lagrangian. In contrast, the action of all higher modes of the algebra is nonlinear, nonlo-

cal and on-shell as described above. Gauging such symmetries is a nontrivial task. Second,

in two dimensions there are no propagating vector fields that could be naturally used to

gauge these symmetries.

It turns out that both these problems have a very natural common solution: introduc-

ing a set of vector fields that couple with a particular topological term in the Lagrangian

allows to gauge various subgroups of the affine symmetry group. The resulting gauge

groups generically include former on-shell symmetries and thus extend beyond the target-

space isometries of the ungauged Lagrangian. The construction in fact is reminiscent of

the four-dimensional case where global symmetries that are only on-shell realized can be

gauged upon simultaneous introduction of magnetic vector and two-form tensor fields which

couple with topological terms [11, 12].

The structure emerging in two dimensions is the following. In addition to the original

physical fields, the Lagrangian of the gauged theory carries vector fields AM
µ in a highest

weight representation of ĝ. In addition, a finite subset of the tower of dual scalar fields

enters the Lagrangian, with their defining first-order equations arising as genuine equations

of motion. The gauging is completely characterized by a constant embedding tensor ΘM

in the conjugate vector representation and subject to a quadratic consistency constraint.

The local gauge algebra is a generically infinite-dimensional subalgebra of ĝ. The result is

a Lagrangian that features scalars and vector fields in infinite-dimensional representations

of the affine ĝ. However, for every particular choice of the embedding tensor only a finite

subset of these fields enters the Lagrangian and only a finite-dimensional part of the gauge

algebra is realized at the level of the Lagrangian (with its infinite-dimensional part exclu-

sively acting on dual scalar fields that do not show up in the Lagrangian). We illustrate

these structures with several examples for the maximal (N = 16) theory for which the

symmetry algebra is e9(9) and vector fields and embedding tensor transform in the basic

representation and its conjugate, respectively.

In addition to the standard minimal couplings within covariant derivatives and the

new topological term, the gauging induces a scalar potential whose explicit form is usually

determined by supersymmetry. It is specific to two dimensions that in absence of such a

potential, the gauging merely induces a reformulation of the original theory. I.e. the field

equations imply vanishing field strengths, such that the only nontrivial effect of the newly

introduced vector fields is due to global obstructions. In absence of such, the theory reduces

to the original one. On the other hand, integrating out the vector fields in this case leads to

an equivalent (T-dual) formulation of the original theory in terms of a different set of scalar

fields. This procedure is well-known from the study of non-Abelian T-duality [13 – 15],

however the results here go beyond the standard expressions, as the gaugings generically

include non-target-space isometries. In contrast, in presence of a scalar potential, as is

standard in supersymmetric theories, the gaugings constitute genuine deformations of the

original theory.
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It is worth to stress that although the construction we present in this paper is worked

out for a very particular class of two-dimensional models — the coset space sigma-models

coupled to dilaton gravity as the typical class of models obtained by dimensional reduction

of supergravity theories — it is by far not limited to this class. The entire construction

extends straightforwardly to the gauging of hidden symmetries in arbitrary two-dimensional

integrable field theories.

The paper is organized as follows. In section 2, we give a brief review of the ungauged

two-dimensional supergravity theories and their global symmetry structure. In particular,

we give closed formulas for the action of the affine symmetry ĝ on the physical fields. In sec-

tion 3, we proceed to gauge subalgebras of the affine global symmetry by introducing vector

fields in a highest weight representation of ĝ and coupling them with a particular topolog-

ical term. We present the full bosonic Lagrangian which is entirely parametrized in terms

of an embedding tensor transforming under ĝ in the conjugate vector field representation

and subject to a single quadratic constraint. In section 4, we discuss various ways of gauge

fixing part of the local symmetries by eliminating some of the redundant fields from the

Lagrangian. In particular, we show that in absence of a scalar potential the presented con-

struction leads to an equivalent (T-dual) version of the ungauged theory whereas a scalar

potential leads to genuinely inequivalent deformations of the original theory. Finally, in

section 5 we study various examples of gaugings of the maximal (N = 16) two-dimensional

supergravity. Among the infinitely many components of the embedding tensor, we identify

several solutions to the quadratic constraint and discuss their higher-dimensional origin.

The various gradings of e9(9) provide a systematic scheme for this analysis.

2. Ungauged theory and affine symmetry algebra

The class of theories we are going to study in this paper are two-dimensional G/K coset

space sigma models coupled to dilaton gravity. These models arise from dimensional reduc-

tion of higher-dimensional gravities: pure Einstein gravity in four space-time dimensions

gives rise to the coset space SL(2)/SO(2) while e.g. the bosonic sector of eleven-dimensional

supergravity leads to the particular coset space E8(8)/SO(16). In this section we briefly

review the Lagrangian for these theories, their integrability structure, and as a consequence

of the latter the realization of the infinite-dimensional on-shell symmetry ĝ, cf. [16 – 18] for

detailed accounts.

2.1 Lagrangian

To define the Lagrangian of the theory we employ the decomposition g = k ⊕ p of the Lie

algebra g = LieG into its compact part k and the orthogonal non-compact complement p.

For the theories under consideration this is a symmetric space decomposition, i.e. the

commutators are of the form

[k, k] = k , [k, p] = p , [p, p] = k . (2.1)
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We denote by tα the generators of g and indicate by subscripts the projection onto the

subspaces k and p, i.e. for Λ ∈ g it is

Λ = Λαtα = Λk + Λp , Λk ∈ k , Λp ∈ p . (2.2)

In addition, it is useful to introduce the following involution on algebra elements

Λ# = Λk − Λp . (2.3)

The (dim G − dimK) bosonic degrees of freedom of the theory are described by a group

element V of G which transforms under global G transformations from the left and local

K transformations from the right, i.e. the theory is invariant under

V → g V k(x)−1 , g ∈ G , k(x) ∈ K . (2.4)

It is sometimes convenient to fix the local K freedom by restricting to a particular set of

representatives V of the coset G/K, on which the global G then acts as

V → g V kg(x)−1 , (2.5)

where kg(x) ∈ K depends on g in order to preserve the class of representatives. This defines

the nonlinear realization of G on the coset space G/K.

The G-invariant scalar currents are defined by

V−1∂µV = Qµ + Pµ , Qµ ∈ k , Pµ ∈ p . (2.6)

The current Qµ is a composite connection for the local K gauge invariance, i.e. it appears

in covariant derivatives of all quantities that transform under K, in particular

DµPν = ∂µPν + [Qµ, Pν ] . (2.7)

The integrability conditions for (2.6) are then given by

D[µPν] = 0 , Qµν ≡ 2∂[µQν] + [Qµ, Qν ] = −[Pµ, Pν ] . (2.8)

The two-dimensional Lagrangian takes the form

L = ∂µσ ∂µρ − 1

2
ρ tr(PµPµ) . (2.9)

In addition to the scalar current Pµ it contains the dilaton field ρ and the conformal

factor σ. The latter originates from the two-dimensional metric which has been brought

into conformal gauge gµν = e2σ ηµν , such that space-time indices µ in (2.9) are contracted

with the flat Minkowski metric ηµν . The only remnant of two-dimensional gravity is the

first term descending from the two-dimensional (dilaton coupled) Einstein-Hilbert term ρR

in conformal gauge. The Lagrangian (2.9) is manifestly invariant under the symmetry (2.4).

It is straightforward to derive the equations of motion which take the form2

∂+∂−ρ = 0 , ∂+∂−σ +
1

2
tr(P+P−) = 0 , D+(ρP−) + D−(ρP+) = 0 , (2.10)

2Our space-time conventions are ηµν = diag(+,−), ǫ01 = −ǫ01 = 1; i.e. η±∓ = 1, ǫ±∓ = ∓.
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where we have introduced light-cone coordinates x± = (x0 ± x1)/
√

2. In addition, the

theory comes with two first order (Virasoro) constraints

∂±ρ ∂±σ − 1

2
ρ tr(P±P±) = 0 , (2.11)

which might equally be obtained from the Lagrangian before the fixing of conformal gauge.

It is straightforward to check that these first order constraints are compatible as a con-

sequence of the equations of motion for ρ and P± and moreover imply the second order

equation for the conformal factor σ.

2.2 Global symmetry and dual potentials

It is well known — starting from the work of Geroch on dimensionally reduced Einstein

gravity [6, 19, 20] — that the global symmetry algebra of the coset space sigma model (2.9)

is not only the algebra of target-space isometries g, but half of its affine extension ĝ [21].

We denote the generators of g by tα and those of ĝ by Tα,m, m ∈ Z. The latter close into

the algebra [22]

[
Tα,m , Tβ,n

]
= fαβ

γ Tγ,m+n + m δm+n ηαβ K , (2.12)

where fαβ
γ and ηαβ = tr(tαtβ) are the structure constants and the Cartan-Killing form of

g, respectively, and K denotes the central extension of the affine algebra. In addition to

Tα,m and K we will find the Witt-Virasoro generator L1 to be crucial for the construction

of this paper. It obeys

[L1, Tα,m ] = −m Tα,m+1 . (2.13)

The central extension K commutes with both Tα,m and L1. We denote by G ⊃ ĝ the

algebra spanned by {Tα,m ,K,L1}.
To define the action of G on the fields V, ρ and σ that enter the Lagrangian (2.9) we

need to introduce an infinite hierarchy of dual potentials. These are additional scalar fields

that are defined as nonlocal functions of V (and ρ), but whose definition is only consistent if

one invokes the equations of motion. Therefore G is only realized as an on-shell symmetry

on (2.10).

To start with, the dilaton ρ is a free field, such that it gives rise to the definition

∂µρ̃ = −ǫµν∂
νρ , ⇐⇒ ∂±ρ̃ = ± ∂±ρ , (2.14)

of its dual ρ̃. Obviously, the dual of ρ̃ gives back ρ. More interesting are the nonlinear

equations of motion for V that can be rewritten as a conservation law ∂µIµ = 0 for the

current Iµ = ρVPµV−1. This allows the definition of the first dual potential Y1

∂±Y1 = ∓I± = ∓ ρVP±V−1 , (2.15)

which is g valued and according to (2.4) transforms in the adjoint representation of the

global G. Integrability of these equations is ensured by ∂µIµ = 0. From the point of
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view of higher-dimensional supergravity theories, equations (2.15) constitute nothing but

a particular case of the general on-shell duality between p forms and D − p − 2 forms

(D = 2, p = 0). In two dimensions however, these equations are just the starting point for

an infinite hierarchy of dual potentials of which the next members Y2, Y3 are defined by

∂±Y2 =

(
±ρρ̃ +

1

2
ρ2

)
VP±V−1 +

1

2
[Y1, ∂±Y1] ,

∂±Y3 =

(
∓1

2
ρ3 ∓ ρρ̃2 − ρ2ρ̃

)
VP±V−1 + [Y1, ∂±Y2] −

1

6
[Y1, [Y1, ∂±Y1]]] . (2.16)

Again, integrability of these equations is guaranteed by the field equations ∂µIµ = 0 and

the defining equation (2.15) of the lower dual potentials. A convenient way to encode

the definition of all dual potentials (and the action of the affine symmetry) is the linear

system [7, 8] which we will describe in the next subsection. In order make the symmetry

structure more transparent we will restrict the discussion in the present subsection to the

lowest few dual potentials and to the action of the lowest few affine symmetry generators

Tα,m.

We identify the zero-modes Tα,0 with the generators tα of the off-shell symmetry g.

These zero-mode symmetries do not mix the original scalars and the dual potentials of

different levels, i.e. V transforms according to (2.4) and all the Ym (m > 0) transform in

the adjoint representation of g. The fields ρ, ρ̃, and σ are left invariant by Tα,0.

The dual potentials ρ̃, Ym are defined by (2.14)–(2.16) only up to constant shifts

ρ̃ 7→ ρ̃ + λ, Ym 7→ Ym + Λm. The generators in G corresponding to these shift symmetries

are L1 and Tα,m (m > 0), i.e.

δ(1) ρ̃ = 1 , δα,m Y β
n =

{
δβ
α for m = n

0 for m > n
, (2.17)

where δ(1) and δα,m denote the action of L1 and Tα,m, respectively, and Ym = Y α
mtα . Since

the definition of the dual potentials also involves ρ̃ and lower dual potentials, it follows

that L1 and Tα,m also act nontrivially on the higher dual potentials Yn (m < n), e.g.

δ(1) Y2 = −Y1 , δ(1) Y3 = −2Y2 ,

Λα δα,1 Y2 =
1

2
[Λ, Y1] , etc. (2.18)

None of the shift symmetries L1 and Tα,m (m > 0) act on the physical fields V, ρ or σ. So

far we have thus not introduced any new physical symmetry. The crucial point about the

symmetry structure of the model is the existence of another infinite family of symmetry

generators Tα,m (m < 0). Their action on the physical fields is expressed in terms of the

dual potentials and thus nonlinear and nonlocal in terms of the original fields. For the

lowest generators, this action is given by

Λαδα,−1 V = [Λ, Y1]V − ρ̃ V[V−1ΛV]p ,

Λαδα,−2 V =

{
[Λ, Y2] +

1

2
[[Λ, Y1], Y1] − ρ̃[Λ, Y1]

}
V +

(
1

2
ρ2 + ρ̃2

)
V[V−1ΛV]p .

(2.19)
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The field ρ is left invariant while the action on the dual potentials Ym and on the conformal

factor σ follows from (2.11), (2.15). We find for example

Λαδα,−1 σ = tr(ΛY1) ,

Λαδα,−1 Y1 = [Λ, Y2] +
1

2
[[Λ, Y1], Y1] +

1

2
ρ2V[V−1ΛV]pV−1 , etc. (2.20)

One can easily check that the symmetries defined in (2.17) and (2.19) indeed close according

to the algebra (2.12). In particular, it follows that the central extension K acts exclusively

on the conformal factor [21]:

δ(0) σ = −1 . (2.21)

In order to define all dual potentials Ym (m > 0) and describe the action of all symmetry

generators Tα,m in closed form we will in the following introduce the linear system [7, 8]

showing the classical integrability of the theory.

2.3 The linear system

A compact way to encode the infinite family of dual potentials and the action of the full

symmetry algebra ĝ is the definition of a one-parameter family of group-valued matrices

V̂(γ) according to the linear system [7, 8, 16]

V̂−1∂µV̂ = Ĵµ , with Ĵµ = Qµ +
1 + γ2

1 − γ2
Pµ +

2γ

1 − γ2
ǫµν P ν , (2.22)

where γ is a scalar function

γ =
1

ρ

(
w + ρ̃ −

√
(w + ρ̃)2 − ρ2

)
, (2.23)

of the constant spectral parameter w which labels the family. As γ is a double-valued

function of w we will in the following restrict to the branch |γ| < 1, i.e. in particular

γ =
1

2
ρw−1 − 1

2
ρρ̃w−2 +

1

8

(
ρ3 + 4ρρ̃2

)
w−3 + . . . , (2.24)

around w = ∞.

It is straightforward to verify that the compatibility of (2.22) is equivalent to (2.8) and

the equations of motion (2.10):

2∂[µĴν] + [Ĵµ, Ĵν ] = Qµν + [Pµ, Pν ] +
1 + γ2

1 − γ2
2D[µPν] − ǫµν

2γ

1 − γ2
ρ−1 Dσ(ρPσ) . (2.25)

Expanding V̂ around w = ∞

V̂ = . . . ew−4 Y4ew−3 Y3ew−2 Y2ew−1 Y1 V , (2.26)

defines the infinite series of dual potentials Yn. In particular, the expansion of (2.22)

around w = ∞ reproduces (2.15), (2.16). For later use we also give the linear system in

light-cone coordinates

V̂−1D±V̂ =
1 ∓ γ

1 ± γ
P± . (2.27)

– 8 –
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Using the matrix V̂ , the action of the symmetry algebra G can be expressed in closed

form. To this end, we parametrize the loop algebra of g by a spectral parameter w and

identify the generators Tα,m with w−mtα. Elements Λ = Λα,mTα,m of ĝ are represented by

g-valued functions Λ(w) = Λα,mw−mtα, meromorphic in the spectral parameter plane. In

terms of Λ(w), the action on the physical fields V, σ can be given in closed form as

V−1 δΛV =

〈
2γ(w)

ρ (1 − γ2(w))
Λ̂p(w)

〉

w

,

δΛ σ = − tr
〈
Λ(w) ∂wV̂(w) V̂−1(w)

〉
w

. (2.28)

Here we have defined the dressed parameter3

Λ̂(w) = V̂−1(w)Λ(w)V̂(w) = Λ̂k(w) + Λ̂p(w) , (2.29)

with the split according to (2.2). In addition, we have introduced the notation

〈f(w)〉w ≡
∮

ℓ

dw

2πi
f(w) = −Resw=∞ f(w) , (2.30)

for an arbitrary function f(w) of the spectral parameter w. The path ℓ is chosen such that

only the residual at w = ∞ is picked up. For definiteness we will treat the functions f(w) =∑∞
m=−∞ fmwm in these expressions as formal power series with almost all coefficients of

positive powers {fm|m > 0} equal to zero. Some useful relations for calculating with these

objects are collected in appendix A.

It is straightforward to check that the transformations (2.28) leave the equations of

motion invariant.4 Since the solution V̂(w) of the linear system (2.22) explicitly enters the

transformation, this is in general not a symmetry of the Lagrangian but only an on-shell

symmetry of the equations of motion (2.10). This will be of importance later on. Moreover,

it is straightforward to check, that the algebra of transformations (2.28) closes according

to (2.12). Relation (A.6) is crucial to verify the action (2.21) of the central extension.

The group-theoretical structure of the symmetry (2.28) becomes more transparent if

we consider its extension to V̂(w) and thereby to the full tower of dual potentials [9]:

V̂−1 δΛV̂(w) = Λ̂(w) −
〈

1

v − w

(
Λ̂k(v) +

γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
Λ̂p(v)

)〉

v

, (2.31)

in the above notation. This action may be rewritten as

δΛV̂(w) = Λ(w) V̂(w) − V̂(w)Υ(γ(w)) , (2.32)

with Υ(γ(w)) ≡
〈

1
v−w

(
Λ̂k(v) + γ(v) (1−γ2(w))

γ(w) (1−γ2(v))
Λ̂p(v)

)〉
v

,

3For notational simplicity we use here and in the following the notation V̂(w) ≡ V̂(γ(w)), even though

by definition globally V̂ is a function of γ and thus on the double covering of the complex w-plane. We will

however be mainly interested in its local expansion around w = ∞ on the sheet (2.24).
4For global aspects of 2d dualities, see [23].
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and thus takes the form of an infinite-dimensional analogue of the nonlinear realiza-

tion (2.5), in which the left action of Λ(w) parametrizing ĝ is accompanied by a right

action of Υ(γ) ∈ k(ĝ) in order to preserve a particular class of coset representatives. The

algebra k(ĝ) is the infinite-dimensional analogue of k in (2.5), i.e. the maximal compact

subalgebra of ĝ, and is defined as the algebra of g-valued functions k(γ), satisfying [16]5

k#(γ) = k(1/γ) . (2.33)

We shall see in the following that the particular set of coset representatives starring in (2.32)

are the functions V̂(γ(w)) regular around w = ∞ in accordance with the expansion (2.26).

For illustration, let us evaluate equation (2.32) for the particular transformation

Λ(w) = w−m Λ, Λ ∈ g, m ∈ Z . Expanding both sides around w = ∞, it follows directly

from (A.5) that for positive values of m, Υ(γ) vanishes, such that the transformation merely

amounts to a shift of the dual potentials Yn in the expansion (2.26); for m = 1, 2 this re-

produces (2.17), (2.18). These transformations do not act on the physical fields present in

the Lagrangian (2.9). For a transformation with negative m on the other hand the second

term in (2.32) no longer vanishes but precisely restores the regularity of V̂ at w = ∞ that

has been destroyed by the first term [25]. These transformations describe the nonlinear and

nonlocal on-shell symmetries on the physical fields and the dual potentials which leave the

equations of motion and the linear system (2.27) invariant. They are commonly referred to

as hidden symmetries, for m = −1 one recovers (2.19). Finally, for m = 0 one recovers the

action (2.4) of the finite algebra g acting as an off-shell symmetry on all the fields. Here,

the local K freedom in (2.4) has been fixed such that [V−1δV]k = 0.

To summarize, the negative modes Tα,m, m < 0 act as nonlocal on-shell symmetries

whereas the positive modes Tα,m, m > 0 act as shift symmetries on the dual potentials.

Only the zero-modes Tα,0 are realized as off-shell symmetries on the physical fields of the

Lagrangian (2.9).

In addition to the affine symmetry algebra ĝ described above, a Witt-Virasoro algebra

can be realized on the fields [24] which essentially acts as conformal transformation on the

inverse spectral parameter y = 1/w. From these generators we will in the following only

need

L1 = −y2∂y = ∂w , (2.34)

which acts only on the dual dilaton ρ̃ and the dual potentials Yn according to equa-

tions (2.17), (2.18)

δ(1)ρ̃ = 1 =⇒ δ(1)V̂ = ∂w V̂ . (2.35)

The pair K and L1 which extends the loop algebra of g to G turns out to be crucial

for our construction of the gauged theory in section 3. The distinguished role of L1 in

this construction — as opposed to all the other Virasoro generators that can be realized

following [24] — stems from its action on the dual dilaton (2.17). The gaugings we are

5Note that k(ĝ) 6= k̂.
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mainly interested in will carry a scalar potential whose presence in particular deforms the

free field equation (2.10) of ρ by some source terms ¤ρ = Q. The only way to maintain a

meaningful version of the dual dilaton equation (2.14) in this case is by gauging its shift

symmetry ∂µρ = −ǫµν(∂ν − Bν δ(1)) ρ̃ while imposing ∂[µBν] = −ǫµν Q. We shall see that

this indeed appears very natural in the subsequent construction.

In the following we will parametrize a general algebra element of G ≡ 〈Tα,m ,K,L1〉
with a collective label A ∈ {(α,m), (1), (0)} for the generators of G as

Λ = ΛA TA = Λα,m Tα,m + Λ(1) L1 + Λ(0) K ≡ Λ(w) + Λ(1)L1 + Λ(0) K ,

(2.36)

with Λ(w) ≡ Λα,mw−m tα. The commutator between two such algebra elements takes the

form

|[ Λ,Σ ]| = [Λ(w),Σ(w)] + Λ(1)∂Σ(w) − Σ(1)∂Λ(w) + K
〈
Λ(w) ∂Σ(w)

〉
w

, (2.37)

where we use the notation |[ , ]| in order to distinguish the general algebra commutator from

the simple matrix commutators [ , ].

Let us finally mention, that the symmetry algebra G is equipped with an invariant

inner product (TA, TB) = ηAB, given by

(Tα,m , Tβ,n) = ηαβ δm+n−1 , (L1,K) = −1 . (2.38)

Note that this invariant form differs from the standard one by the shift of −1 in the L0

grading. This is precisely consistent with the use of L1 rather than L0 in the pairing with

the central extension K.

2.4 Structure of the duality equations

For the following it turns out the be important to analyze in more detail the structure of

the duality equations (2.14) and (2.22) which have been used to define the dual fields ρ̃

and V̂ . Let us for the moment consider these dual fields as a priori independent fields and

the duality equations as their first order equations of motion relating them to the physical

fields ρ and V. In particular, we may define the G-valued current Zµ as

Zµ = ZA
µ TA = Zµ(w) + Z(1)

µ L1 , (2.39)

Z(1)
µ ≡ −∂µρ̃ − ǫµν∂

νρ ,

Zµ(w) ≡ V̂
[
− V̂−1∂µV̂ + Qµ +

1 + γ2

1 − γ2
Pµ +

2γ

1 − γ2
ǫµνP ν

]
V̂−1 − ∂wV̂ V̂−1 Z(1)

µ ,

which is a particular combination of the duality equations, i.e. on-shell we have Zµ = 0.

Under a generic symmetry transformation Λ ∈ G the constituents of Zµ transform accord-

ing to (2.28), (2.31), and (2.35) and some lengthy computation shows that altogether Zµ

transforms as

δΛZ± = |[ Λ, Z±]| − V̂
〈 1

v − w
V̂−1 |[ Λ, Z±]| V̂

〉
k,v
V̂−1

−1 ∓ γ

1 ± γ
V̂

〈 1

v − w

1 ± γ

1 ∓ γ
V̂−1 |[ Λ, Z±]| V̂

〉
p,v

V̂−1 , (2.40)
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in light-cone coordinates. In order not to overburden the notation here, all spectral pa-

rameter dependent functions within the brackets 〈·〉v depend on the parameter v which

is integrated over, whereas all functions outside depend on the spectral parameter w. In

slight abuse of notation, the commutators |[ , ]| represent the full G commutator (2.37)

however without the central term K.6 In particular, (2.40) shows that Zµ transforms ho-

mogeneously under Λ — consistent with the fact that Zµ vanishes on-shell. This current

will play an important role in the following.

3. Gauging subgroups of the affine symmetry

In the previous section we have reviewed how the equations of motion of the ungauged two-

dimensional theory are invariant under an infinite algebra G of symmetry transformations.

The symmetry action on the physical fields (2.28) is defined in terms of the matrix V̂ which

in turn is defined as a solution of the linear system (2.22). As a result, the global symmetry

is nonlinearly and nonlocally realized on the physical fields.

We will now attempt to gauge part of the global symmetry (2.28), i.e. turn a subalgebra

of G into a local symmetry of the theory. This is rather straightforward for subalgebras

of g = 〈Tα,0〉 ⊂ G, as g is the off-shell symmetry algebra of the Lagrangian. In fact,

since g is already the off-shell symmetry of the three-dimensional ancestor of the theory,

the corresponding gaugings are simply obtained by dimensional reduction of the three-

dimensional gauged supergravities [4, 27]. The gauging of generic subalgebras of G is

much more intricate, as their action explicitly contains the matrix V̂ which is defined only

on-shell as a nonlocal functional of the physical fields. This is the main subject of this

paper. The problem is analogous to the one faced in four dimensions when trying to

gauge arbitrary subgroups of the scalar isometry group — not restricting to triangular

symplectic embeddings — which has been solved only recently [11, 12]. We will follow a

similar approach here.

As a key point in the construction we will introduce the dual scalars ρ̃ and V̂ as

independent fields on the Lagrangian level. The duality equations (2.39) relating them to

the original fields will naturally emerge as first order equations of motion. Specifically, the

field equations obtained by varying the Lagrangian with respect to the newly introduced

gauge fields of the theory turn out to be proportional to the current Zµ introduced in

section 2.4 which combines the duality equations.

3.1 Gauge fields and embedding tensor

In order to construct the gauged theory, we make use of the formalism of the embedding

tensor, introduced to describe the gaugings of supergravity in higher dimensions [4, 5].

Its main feature is the description of the possible gaugings in a formulation manifestly

covariant under the global symmetry G of the ungauged theory. As a first step we need

to introduce vector fields in order to realize the covariant derivatives corresponding to the

6Inclusion of this term would presumably require the extension of Zµ by a K-valued term proportional

to the Virasoro constraints (2.11). This is in accordance with the generalized linear system proposed in [26].

For the purpose of this paper however this would complicate things unnecessarily.
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local symmetry. In contrast to higher dimensions where the vector fields come in some

well-defined representation of the global symmetry group of the ungauged theory, in two

dimensions these fields do not represent propagating degrees of freedom and are absent

in the ungauged theory.7 We will hence start by introducing a set of vector fields AM
µ

transforming in some a priori undetermined representation (labeled by indices M) of the

algebra G.

An arbitrary gauging then is described by an embedding tensor ΘM
A that defines the

generators

XM ≡ ΘM
A TA , (3.1)

of the subalgebra of G which is promoted to a local symmetry by introducing covariant

derivatives

Dµ = ∂µ − gAM
µ ΘM

A TA , (3.2)

with a gauge coupling constant g.8 The way ΘM
A appears within these derivatives shows

that under G it naturally transforms in the tensor product of two infinite-dimensional repre-

sentations. Gauge invariance immediately imposes the quadratic constraint (or embedding

equation)

fBC
A ΘM

B ΘN
C + TB,N

P ΘM
B ΘP

A = 0 , (3.3)

on ΘM
A, where fBC

A denote the structure constants of the algebra (2.12), (2.13), and

TB,N
P are the generators of G in the representation of the vector fields. Equivalently, this

constraint takes the form

[XM,XN ] = −XMN
K XK , (3.4)

with “structure constants”9 XMN
K = ΘM

A TA,N
K. We will impose further constraints on

ΘM
A in the sequel.

It will sometimes be convenient to expand the covariant derivatives (3.2) according

to (2.36) as

Dµ = ∂µ − gAα
µ(w) tα − gA(1)

µ L1 − gA(0)
µ K , (3.5)

7Also in three dimensions it is most convenient to start from a formulation of the ungauged theory in

which no vector fields are present [4, 27]. In contrast to the present case, however, the vector fields in three

dimensions are dual to the scalar fields and thus naturally come in the adjoint representation of the scalar

isometry group.
8The coupling constant g always comes homogeneous with the embedding tensor and could simply be

absorbed by rescaling ΘM
A. We will keep it explicitly to have the deformation more transparent.

9We have put quotation marks here because according to this definition the constants XMN
K are not

antisymmetric in the first two indices, but only after further multiplication with a generator XK. Manifest

antisymmetrization on the other hand defines objects X[MN ]
K that do no longer satisfy the Jacobi identities.

Analogous structures arise in higher-dimensional gauged supergravity theories [28].
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with the projected vector fields

A(1)
µ = ΘM

(1) AM
µ ,

A(0)
µ = ΘM

(0) AM
µ ,

Aα
µ(w) =

m=∞∑

m=−∞

w−m ΘM
α,m AM

µ . (3.6)

While the appearance of the infinite sums (over m and over M) in the definition of Aα
µ(w)

(and thus the appearance of an infinite number of vector fields) looks potentially worrisome,

we will eventually impose constraints on ΘM
α,m such that only a finite subset of vector

fields AM
µ enters the Lagrangian.

Explicitly, the action of the covariant derivative on the various scalars reads10

Dµρ̃ =∂µρ̃ − gA(1)
µ ,

Dµσ =∂µσ + gA(0)
µ + g tr

〈
Aµ(w) ∂wV̂(w)V̂−1(w)

〉
w

,

V−1DµV =V−1∂µV − g
〈 2γ(w)

ρ (1 − γ2(w))
Âµ(w)p

〉
w

= Pµ + Qµ ,

V̂−1DµV̂(w) =V̂−1∂µV̂(w) − gA(1)
µ V̂−1∂wV̂(w) − g Âµ(w)

+ g

〈
1

v − w

(
[Âµ(v)]k +

γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
[Âµ(v)]p

)〉

v

, (3.7)

with Âµ(w) = V̂−1(w)Aµ(w)V̂(w).

3.2 The Lagrangian

As a first step towards introducing the local symmetry on the level of the Lagrangian, we

consider the covariantized version of (2.9)

Lkin = ∂µρDµσ − 1

2
ρ tr(PµPµ) , (3.8)

with covariant derivatives according to (3.7). Obviously, (3.8) cannot be the full answer

since the equations of motion for the newly introduced vector fields will pose unwanted (and

in general inconsistent) first order relations among the scalar fields. Likewise, according

to (3.7) the Pµ now carry the dual potentials ρ̃ and V̂ which are to be considered as

independent fields. Variation with respect to these fields then gives rise to even stranger

constraints.

10Comparing (3.7) to (2.6) one notices that Qµ ≡ [V−1DµV]k = Qµ does not depend on the coupling

constant g. This is due to our particular SO(16) gauge choice in equation (2.28).
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Remarkably, all these problems can be cured by adding to the Lagrangian what we

will refer to as a topological term11

Ltop = −g ǫµν

{
tr

〈
Âµ

(
V̂−1(∂ν V̂ − ∂wV̂ ∂ν ρ̃) − Qν − 1 + γ2

1 − γ2
Pν

)〉
w

−A(0)
µ ∂ν ρ̃

}

−1

2
g2 ǫµν A(0)

µ A(1)
ν − 1

2
g2 ǫµν tr

〈〈 1

v − w
[Âµ(w)]k [Âν(v)]k

〉
v

〉
w

(3.9)

−1

2
g2 ǫµν tr

〈〈 (γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(v − w)(1 − γ2(v))(1 − γ2(w))
[Âµ(w)]p [Âν(v)]p

〉
v

〉
w

,

which is made such that the vector field equations of motion precisely yield (a projection of)

the covariantized version of the duality equations (2.14), (2.22). Explicitly, the variation

of the Lagrangian L0 = Lkin + Ltop with respect to the vector fields reads

δL0 = −g ηAB ΘM
A ǫµνZB

µ δAM
ν , (3.10)

where Zµ is the properly covariantized version of the G-valued current defined in (2.39)

above. It contains the covariantized versions of the duality equations (2.14) and (2.22) that

render ρ̃ dual to ρ and V̂ dual to V, respectively. As vector field equations in the gauged

theory we thus find a Θ-projection of Zµ = 0 :

g ΘM
A ηAB ZB

µ = 0 . (3.11)

In the limit g → 0 back to the ungauged theory these equations consistently decouple.

The fact that the higher order g terms of (3.11) can be consistently integrated to the

variation (3.10) is nontrivial and puts quite severe constraints on the construction. Namely,

it requires the following constraint

tr
〈
Aµ(w) δAν(w)

〉
w
−A(1)

µ δA(0)
ν −A(0)

µ δA(1)
ν = 0 , (3.12)

on the variation with respect to the projected vector fields. Fortunately, this condition

translates directly into the G covariant constraint

ΘM
A ΘN

B ηAB = 0 , (3.13)

for the embedding tensor ΘM
A. For consistency, this constraint must thus be imposed

together with the quadratic constraint (3.3) ensuring gauge invariance. As in higher-

dimensional gaugings [5], we expect that the latter constraint (3.13) should eventually be

a consequence of (3.3). This is one motivation for the ansatz

ΘM
A = TB,M

N ηAB ΘN , (3.14)

for the embedding tensor parametrized by a single conjugate vector ΘM. In terms of G

representations this means that ΘM
A does not take arbitrary values in the tensor product

11We call this term topological as after relaxing conformal gauge it does not depend on the two-

dimensional metric.
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of the coadjoint and the conjugate vector field representation, but only in the conjugate

vector field representation contained in this tensor product. This is the analogue of the

linear representation constraint that is typically imposed on the embedding tensor in higher

dimensions [4, 5]. Indeed, it is straightforward to verify that the ansatz (3.14) reduces the

quadratic constraints (3.3) and (3.13) to the same constraint for ΘM:

ηAB TA,M
P TB,N

Q ΘPΘQ = 0 . (3.15)

Further support for the ansatz (3.14) comes from the fact that all the examples of gauged

theories in two dimensions (presently known to us) turn out to be described by an embed-

ding tensor of this particular form. In particular, in all examples originating by dimensional

reduction from a higher-dimensional gauged theory, the constraint (3.14) is a consequence

of the corresponding linear constraint in higher dimensions. We will come back to this

in section 5. This shows that (3.14) describes an important class of if not all the two-

dimensional gaugings.

It is useful to give the projected vector fields (3.5) using (3.14)

A(1)
µ = −T(0),M

N AM
µ ΘN ,

A(0)
µ = −T(1),M

N AM
µ ΘN ,

Aα
µ(w) =

m=∞∑

m=−∞

w−m ηαβ (Tβ,(1−m))M
N AM

µ ΘN ≡ Aα,m
µ w−m . (3.16)

This further suggests that the vector fields AM
µ transform in some irreducible highest weight

representation of G. Namely, in that case there is for any given M an integer M such that

(Tβ,m)N
M = 0 , for all m > M . (3.17)

Formula (3.16) then shows that for every gauging defined by an embedding tensor ΘM

with only finitely many non-vanishing entries, the projected vector fields Aα
µ(w) carry only

finitely many positive powers of w. As a consequence, only finitely many of the AM
µ enter

the Lagrangian (3.8), (3.9), which is certainly indispensable for a meaningful action.

Moreover, it follows from (2.26) that the terms ∂wV̂V̂−1 and V̂Zµ(w)V̂−1 have expan-

sions in 1/w starting with w−2 and w−1, respectively. From the variation (3.10) we thus

find that the positive mode vector fields Aα,m
µ , m > 0, do not enter the Lagrangian at

all. I.e. a gauging of the shift symmetries of the dual potentials is not visible in the La-

grangian. From the Lagrangian itself this fact is not obvious since the quadratic constraint

was used to derive (3.10). Only a truncation of the full gauge group is thus manifest in the

Lagrangian. We will see this realized in explicit examples in section 5.

In the rest of this section, we will show that every embedding tensor of the form (3.14)

with ΘM satisfying (3.15) defines a gauge invariant Lagrangian.

3.3 The quadratic constraint

Let us pause for a moment and reconsider the present construction. We have constructed

the gauged Lagrangian (3.8), (3.9) by covariantizing the ungauged theory and adding a
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topological term such that variation with respect to the new gauge fields yields the scalar

duality equations. The gauging is entirely parametrized in terms of the embedding tensor

ΘM. At first sight the formalism of the embedding tensor may seem unnecessarily heavy

in two dimensions. As the new gauge fields enter the Lagrangian only in the contracted

form AA
µ ≡ AM

µ ΘM
A, could we not have started right away from a set of vector fields

AA
µ in the adjoint representation rather than introducing AM

µ in some yet undetermined

representation, and ΘM
A separately? The answer is no. Consistency of the construction

essentially depends on the quadratic constraint (3.15) on the embedding tensor which in

particular implies that not all components of the projected AA
µ are independent. This is

most conveniently taken care of by explicitly introducing ΘM
A.

Before proceeding with the proof of gauge invariance of the Lagrangian, we will in this

subsection closer analyze this quadratic constraint imposed on the embedding tensor. It

can be skipped on first reading. We have shown above that the linear ansatz (3.14) for

ΘM
A reduces the quadratic constraints (3.3) and (3.13) to the same constraint

ηAB TA,M
P TB,N

Q ΘPΘQ = 0 , (3.18)

for the tensor ΘM. This exhibits an interesting representation structure underlying the

quadratic constraint. Formally, the constraint (3.18) lives in the twofold symmetric tensor

product of the conjugate vector field representation. In particular, if ΘM transforms in

a level k highest weight representation, the constraint transforms in an (infinite) sum

of level 2k highest weight representations. As we are dealing with infinite-dimensional

representations, these are most conveniently described in terms of the associated characters.

Let us denote by χΘ the character of the conjugate vector field representation, and by χi

the characters associated with the different level 2k representations Ri of ĝ. They are

extended to representations of the Virasoro algebra by means of the standard Sugawara

construction. In terms of these characters, the decomposition of the product ΘMΘN takes

the form

χΘ ⊗sym χΘ =
∑

i

χvir
i · χi , (3.19)

where the sum is running over the level 2k representations of ĝ and the coefficients χvir
i

encoding the multiplicities of these representations carry representations of the Virasoro

algebra associated with the coset model [29]

ĝk ⊕ ĝk

ĝ2k
. (3.20)

For simplicity, we restrict to simply-laced Lie algebras g in the following. With the central

charge of the Virasoro algebra on ĝk given by ck = k dim(g)/(k + g∨) in terms of the dual

Coxeter number g∨ of g, the coset CFT has central charge

2k2 dim(g)

(k + g∨)(2k + g∨)
. (3.21)
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The coset Virasoro generators acting on (3.19) are given by

Lcoset
m = Lbgk⊕bgk

m − Lbg2k
m , (3.22)

in terms of the Virasoro generators induced by ĝk ⊕ ĝk and ĝ2k, respectively. A brief

calculation reveals that they take the explicit form

(Lcoset
m )MN

PQ =
2

k + g∨

(
(Lm)(M

(P δ
Q)
N ) −

∞∑

n=0

ηαβ (Tα,m+n)(M
(P (Tβ,−n)N )

Q)

)
.

In particular, we thus obtain

(Lcoset
1 )MN

PQ = − 1

k + g∨
ηAB TA,M

(P TB,N
Q) , (3.23)

which shows that the quadratic constraint (3.18) can be rewritten in strikingly compact

form as

Lcoset
1 (Θ ⊗ Θ) = 0 . (3.24)

The quadratic constraint thus takes the form of a projector on the product decomposi-

tion (3.19) which acts on the multiplicities χvir
i . Only those components within Θ whose

products induce a quasi-primary state in the coset CFT (3.20) give rise to a consistent

gauging. While this CFT formulation of the quadratic constraint is certainly very appeal-

ing we do at present have no good interpretation for the appearance of this structure. We

will show explicitly in the next subsection that (3.24), alias (3.18), is a sufficient constraint

for gauge invariance of the Lagrangian.

3.4 Gauge invariance of the Lagrangian

The Lagrangian (3.8), (3.9) was determined above by requiring that variation with respect

to the vector fields yields a properly covariantized version of the scalar duality equations. In

particular, this uniquely fixes all higher order g couplings. In the rest of this section we will

show that this Lagrangian is indeed invariant under the local action of the generators (3.1)

δΛ ρ̃ = gΛ(1) ,

δΛ σ = −g tr
〈
Λ(w) ∂w V̂(w) V̂−1(w)

〉
w
− gΛ(0) ,

V−1 δΛV = g
〈 2γ(w)

ρ (1 − γ(w)2)
Λ̂p(w)

〉
w

,

V̂−1 δΛV̂(w) = g Λ̂(w) + g Λ(1) V̂−1 ∂wV̂

− g
〈 1

v − w

(
Λ̂k(v) +

γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
Λ̂p(v)

)〉
v

, (3.25)

where

Λ = ΛM(x)ΘM
A TA = Λ(w;x) + Λ(1)(x)L1 + Λ(0)(x)K , (3.26)
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now is a space-time dependent element of G induced by the gauge parameter ΛM(x). In

addition, the action of the generators on the vector fields needs to be properly implemented.

To this end, we first compute the variation of L0 = Lkin +Ltop under generic variation

of vector and scalar fields. A somewhat tedious but beautiful computation shows that this

variation may be cast in the following compact form

δL0 = −g TA,M
N ΘN ǫµνZµ

A (∆AM
ν ) − ∂µ∂µρ δσ −

(
D̂µDµσ +

1

2
trPµPµ

)
δρ

+ tr
(
D̂µ(ρPµ)

[
V−1δV

]
p

)
− 1

2
g ǫµν TA,M

N F̂M
µν ΘN δΣ̂A . (3.27)

The quadratic constraint (3.15) on ΘM is essential in the derivation of this result. In

expressing the generic variation we have introduced the “covariantized” variations

∆AM
± ≡ δAM

± + TA,N
M AN

± δΣ̂A
± ,

δΣ̂± ≡ V̂
{
V̂−1δV̂ − [V−1δV]k −

1 ∓ γ

1 ± γ
[V−1δV]p

}
V̂−1 + (L1 − ∂wV̂V̂−1) (δρ̃ ∓ δρ) ,

δΣ̂ ≡ 1

2
(δΣ̂+ + δΣ̂−) , (3.28)

and generalized field strength and covariant derivatives according to

F̂M
µν = 2∂[µAM

ν] − 2TA,N
M ZA

[µ AN
ν] + gXPQ

M AP
[µ AQ

ν] , (3.29)

D̂µDνσ = ∂µDνσ − g AM
µ

{
δNM Dν + ZC

ν TC,M
N

}
ΘN

A (TA ·σ) ,

D̂µPν = (∂µ + adQµ)Pν − g AM
µ

{
δNM (Dν + adQν ) + ZC

ν TC,M
N

}
ΘN

A [V−1(TA ·V)]p .

These expressions differ from the standard definitions of field strength and covariant deriva-

tives by the appearance of the current Zµ containing the duality equations of the ungauged

theory. Recall that in the gauged theory only its Θ-projection (3.11) is zero by the equa-

tions of motion. Its natural appearance in (3.29) motivates the introduction of generalized

covariant derivatives D̂

D̂µ = ∂µ + (ZA
µ − g AM

µ ΘM
A)TA . (3.30)

Note that as Zµ contains only negative powers of w, it only couples to shift symmetry

generators in the covariant derivatives. Thus, for all physical fields ρ, V, there is no

difference between the full covariant derivative D̂ and (3.2) defined above.

In view of (3.27), (3.29), a natural ansatz for the transformation of the vector fields is

δΛAM
µ = D̂µΛM ≡ DµΛM − ZA

µ TA,N
M ΛN . (3.31)

Indeed, the main result we establish in this section is the invariance of the full Lagrangian

L0 = Lkin + Ltop under the combined action (3.25), (3.31) of the local gauge algebra.
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We now give a sketch of the proof. Computing the covariantized variations (3.28) for

the gauge transformations (3.25) yields

δΛΣ̂ = gΛ(w) − gkΛMΘM L1

−g V̂(w)
〈 1

v − w

(
Λ̂k(v) +

(γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(1 − γ2(v))(1 − γ2(w))
Λ̂p(v)

)〉
v
V̂−1(w) ,

and

∆Λ AM
± = D̂±ΛM + (gΛ(w) − gkΛMΘM L1)

A TA,N
M AN

± (3.32)

− g

(
V̂

〈 1

v − w
Λ̂

〉
k,v
V̂−1 +

1 ± γ

1 ∓ γ
V̂

〈 1

v − w

1 ∓ γ

1 ± γ
Λ̂

〉
p,v

V̂−1

)A

TA,N
M AN

± .

Again, we use the short-hand notation according to which all spectral parameter depen-

dent functions within the brackets 〈·〉v depend on the parameter v which is integrated over,

whereas all functions outside depend on the spectral parameter w. Plugging all the vari-

ations into the Lagrangian, one obtains after some lengthy computation and up to total

derivatives

δΛ L0 = −1

2
g ΘM

A ηAB ΛM ǫµν XB
µν , (3.33)

with

Xµν ≡ 2D[µZν] + |[Zµ,Zν ]| + 2D̂[µJν] − |[Jµ,Jν ]| − g F̂µν
M ΘM

A (TA · V̂) V̂−1 ,

Jµ ≡ V̂
{

Qµ +
1 + γ2

1 − γ2
Pµ +

2γ

1 − γ2
ǫµν Pν

}
V̂−1 . (3.34)

The calculation makes use of the covariantized version of (2.25) for Ĵµ = V̂−1JµV̂. The

subtle part in calculating (3.33) is the check that the various terms arising from the dif-

ferent variations arrange into the correct covariant derivatives, as the Lagrangian and the

variations have no manifest covariance. E.g. the extra AM
µ contributions from (3.32) are

precisely the ones needed in order to complete the correct covariant derivatives Dµ on Zν

in Xµν . For this it is important to note that due to the extra contributions of order g0

in (3.31) the variation of Zµ changes with respect to the ungauged theory (2.40) to

δΛZ± = F (Λ,Z) − V̂
〈 1

v − w
V̂−1 F (Λ,Z) V̂

〉
k,v
V̂−1

−1 ∓ γ

1 ± γ
V̂

〈 1

v − w

1 ± γ

1 ∓ γ
V̂−1 F (Λ,Z) V̂

〉
p,v

V̂−1 ,

with F (Λ,Z)A ≡ −g ΛM (ZB
µ ΘNB)TA

M
N , (3.35)

where indices A, B are lowered and raised with ηAB and its inverse. Indeed, this is precisely

consistent with the fact that in the gauged theory only the projection ZB
µ ΘNB vanishes on-

shell as a set of first order equations of motion for the dual potentials (3.11) — accordingly,

it must transform homogeneously under gauge transformations.
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It remains to show that Xµν vanishes. In order to do so, we first note that with the

definition (3.30) of generalized covariant derivatives D̂µ, we find for the dual fields ρ̃, V̂

D̂µρ̃ = −ǫµν ∂νρ ,

D̂µV̂ V̂−1 = Jµ , (3.36)

with Jµ from (3.34), changing drastically the previous expressions (3.7).12 Now, the fact

that Xµν = 0 is a direct consequence of (3.36) and

[D̂µ, D̂ν ] V̂ = ĤA
µν TA · V̂ , (3.37)

where Ĥµν is the field strength associated with the full connection (3.30).

Summarizing, we have shown that under gauge transformations (3.25), (3.31) the La-

grangian L0 = Lkin+Ltop remains invariant up to total derivatives. The local gauge algebra

is spanned by generators XM (3.1) and is a subalgebra of the global symmetry algebra G

of the ungauged theory. In particular, the gauge algebra may include hidden symmetries

which in the ungauged theory are realized only on-shell.

4. Gauge fixing

In the previous section we constructed the deformation of the ungauged Lagrangian (2.9)

that is invariant under the local version of a subalgebra of the affine symmetry algebra G

of (2.9). The gauged Lagrangian has been obtained by coupling vector fields with minimal

couplings in covariant derivatives (3.8) and adding a topological term (3.9). The gauging

is entirely parametrized in terms of the embedding tensor ΘM which in particular encodes

the local gauge algebra with generators (3.1).

With the new gauge fields and a number of dual scalar fields the gauged Lagrangian

contains more fields than the original one, however as the new fields couple topologically

only they do not introduce new degrees of freedom. More specifically, these fields arise with

the first order field equations (4.3) below, such that the additional local symmetries pre-

cisely eliminate the additional degrees of freedom. In this section, we illustrate the various

ways of gauge fixing the action and discuss the resulting different equivalent formulations

of the theory. Before that, we describe the generic properties of the scalar potential which

completes the construction of the bosonic sector of gauged supergravity.

4.1 Scalar potential and equations of motion

An important additional feature of gauged supergravity theories is the presence of a scalar

potential V which is enforced in order to maintain supersymmetry of the deformed La-

grangian. Its explicit form depends on the particular ungauged theory, in particular on

the number of supercharges. It must thus be computed case by case in the various super-

symmetric theories and we leave this for future work. Here we will just summarize the

12In fact, equations (3.36) suggest to think of Zµ as some composite connection within the full affine

algebra.
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generic properties of this potential and discuss their consequences for the gauged theory.

As a general property, the potential arises quadratic in the coupling constant g, i.e. the

deformed Lagrangian is supplemented by a term Lpot = −g2 V where V is bilinear in

ΘM, and generically depends on all scalar fields ρ, ρ̃, V, V̂, and σ. This dependence is

constrained in order that its variation takes the specific form

δV =
δV

δρ
δρ +

δV

δσ
δσ + tr

(
δV

δΣ
[V−1 δV]p

)
+

δV

δΣ̂A
δΣ̂A , (4.1)

with δV
δΣ ∈ p, δΣ̂A ∈ G from (3.28). Furthermore the various variations of V are constrained

such that (4.1) vanishes for gauge transformations (3.25), i.e. the scalar potential is sepa-

rately gauge invariant. In particular, no further constraints on the embedding tensor will

arise from its presence.

The total Lagrangian of the gauged theory then reads

L = Lkin + Lpot + Ltop (4.2)

= ∂µρDµσ − 1

2
ρ tr(PµPµ) − g2 V

− g ǫµν

{
tr

〈
Âµ

(
V̂−1(∂ν V̂ − ∂wV̂ ∂ν ρ̃) − Qν − 1 + γ2

1 − γ2
Pν

)〉
w

−A(0)
µ ∂ν ρ̃

}

−1

2
g2 ǫµν A(0)

µ A(1)
ν − 1

2
g2 ǫµν tr

〈〈 1

v − w
[Âµ(w)]k [Âν(v)]k

〉
v

〉
w

−1

2
g2 ǫµν tr

〈〈 (γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(v − w)(1 − γ2(v))(1 − γ2(w))
[Âµ(w)]p [Âν(v)]p

〉
v

〉
w

.

It gives rise to the following equations of motion:

∂µ∂µρ = −g2 δV

δσ
, D̂µDµσ = −1

2
trPµPµ − g2 δV

δρ
, D̂µ(ρPµ) = g2 δV

δΣ
,

TA,M
N ΘN ZA

µ = 0 , TA,M
N F̂M

µν ΘN = −2g
δV

δΣ̂A
. (4.3)

The duality equation TA,M
N ΘN ZA

µ = 0 is not affected by the presence of the scalar

potential while all other equations change. In particular, a vanishing field strength is in

general no longer compatible with the field equations, i.e. the gauge fields have a nontrivial

effect despite the fact that they are non-propagating in two dimensions. Note further, that

the full covariant derivatives D̂µ defined in (3.30) contain nontrivial ZA
µ contributions even

on-shell, as only the Θ-projection of ZA
µ vanishes by the equations of motion.

4.2 Gauge fixing

As anticipated above, the new fields V̂ , AM
µ entering the gauged Lagrangian induce first

order equations of motion (4.3). Together with the additional local symmetry this implies

that no new degrees of freedom are present in the gauged Lagrangian. In order to make

this manifest, it may be useful to gauge-fix the local symmetry. Also in order to make

contact with the theories arising from particular compactification scenarios, it will often
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be required to fix part of the extra local gauge symmetry, thereby effectively reducing

the number of fields. In this subsection we will discuss various ways of gauge fixing the

action (4.2).

Let us first illustrate the relevant structures with an extremely simple toy example, we

consider the Lagrangian

L = −1

2
∂µϕ∂µϕ , (4.4)

of a free scalar field. The global shift symmetry ϕ → ϕ + c can be gauged by introducing

covariant derivatives Dµϕ ≡ ∂µϕ− gAµ. The analogue of the full gauged Lagrangian (4.2)

then carries a gauge field Aµ as well as a dual scalar field χ and is of the form

L = −1

2
DµϕDµϕ − g2 V (χ) − gǫµνAµ ∂νχ , (4.5)

with the three terms representing the kinetic, the potential, and the topological term,

respectively. This action is obviously invariant under δϕ = gλ(x) , δAµ = ∂µλ(x), in

particular, this restricts the potential V to depend on the dual scalar field χ only. The

equation of motion derived from (4.5) are

∂µDµϕ = 0 , Dµϕ = ǫµν ∂νχ , Fµν = gǫµν V ′(χ) , (4.6)

where the first equation consistently coincides with the integrability condition of the second

equation. There are (at least) three different ways of fixing the gauge freedom in (4.5).

(i) In the case of a vanishing potential V = 0, and on a topologically trivial back-

ground, the vector field is pure gauge and may be put to zero, yielding the original

Lagrangian (4.4). In this case, the deformation (4.5) thus is just a reformulation of

the original model.

(ii) For arbitrary potential V , the duality equation can be used to express Aµ in terms of

scalar currents. On the Lagrangian level this leads to a theory expressed exclusively

in terms of the dual scalar field χ

L(1) = −1

2
∂µχ∂µχ − g2 V (χ) . (4.7)

According to the reasoning of (i), in the absence of a scalar potential this provides a

dual formulation of the original model (4.4). This is (trivial) T-duality for the free

scalar field. For more complicated systems the very same procedure yields the known

T-duality rules in the Abelian and the non-Abelian case [13]. For non-vanishing

potential, we obtain an equivalent formulation of the ’gauged’ theory (4.5) in which

the kinetic term is replaced by a T-dual version in terms of dual scalar fields, in which

no gauge fields are present. The theory is in general no longer equivalent to the the

original Lagrangian (4.4) due to the presence of the scalar potential in order g2.

(iii) For a quadratic potential V (χ) = V0 + 1
2m2χ2, i.e. considering the lowest order

expansion around a stationary point, the equations of motion may be used to replace
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mgχ = Fµν . Simultaneously fixing the gauge freedom by setting ϕ = 0, one arrives

at a Lagrangian

m2L(2) = −1

4
FµνFµν − 1

2
g2m2 AµAµ − g2m2V0 , (4.8)

of a massive vector field which now carries the degree of freedom of the system. This

is the standard Higgs mechanism in two dimensions.

Gauge fixing of the general Lagrangian (4.2) is considerably more complicated due to

the high nonlinearity of the system, but schematically follows precisely the same pattern.

In applications to describe the effective actions of concrete compactifications with non-

vanishing cosmological constant, the last procedure (iii) will be often the most appropriate

one in order to identify the correct distribution of the degrees of freedom among different

supermultiplets. From a point of view, the gauge fixing according to (ii) is the most

interesting. In the context of the full model (4.2) it extends to the following: the duality

equations TA,M
N ΘN ZA

µ = 0 can be solved as algebraic equations for the vector fields

ΘM
AAM

µ . The explicit formulas may be arbitrarily complicated of course. Plugging this

back into the Lagrangian leads to an equivalent formulation of the model in which the

vector fields have been completely removed from the action. As in (ii) this exchanges the

kinetic term by a T-dual version in terms of dual scalar fields. In this formulation the

only effect of the gauging is the scalar potential which remains unaffected by the gauge

fixing. We conclude that for every gauging in two dimensions there is a formulation in a

T-dual frame, i.e. a formulation in terms of a combination of original and dual scalars, in

which no gauge fields enter the Lagrangian and the only effect of the gauging is the scalar

potential. (In general, this will not be the most convenient frame to identify a particular

higher-dimensional origin.)

Let us consider as an example a gauging in which a subalgebra of the zero-modes of ĝ,

i.e. of the algebra of target-space isometries g is gauged. According to (3.9) this will induce a

topological term which couples the gauge fields to the (algebra-valued) dual potentials Y1.

No higher dual potentials enter the Lagrangian. Apart from some additional subtleties

related to the coset structure of (3.8), the resulting couplings are precisely of the type

considered in [14]. Integrating out the vector fields in absence of a scalar potential gives

rise to a dual formulation of the model and reproduces the known formulas of non-Abelian

T-duality [13 – 15, 30 – 33]. In particular, since (in contrast to the simplified example (4.6))

the duality equations in this case carry the vector fields on both sides, the procedure gives

rise to antisymmetric couplings ǫµν ∂µY1
α ∂νY1

β B[αβ] among the dual scalar fields in the

new frame. For maximal supergravity, an example of different scalar frames has been

worked out in [34].

As discussed above, the gauge groups appearing in our construction (4.2) will in gen-

eral go beyond the off-shell symmetry of the ungauged theory, i.e. beyond the target-space

isomorphisms of the original σ-model. They will thus naturally lead to a far broader class

of equivalent formulations of the kinetic sector, obtained after integrating out the vector

fields. The proper framework to systematically incorporate these different formulations is

presumably Lie-Poisson T-duality, see [35 – 38]. We defer a systematic treatment to future
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work. Let us stress once more that due to the presence of a scalar potential, the gaug-

ings (4.2) describe genuinely inequivalent deformations of the ungauged Lagrangian (2.9).

5. Maximal supergravity

One of the richest examples in two dimensions is the theory obtained by dimensional re-

duction from eleven-dimensional supergravity giving rise to maximal N = 16 supergravity

with scalar coset space G/K = E8(8)/SO(16) as a particular case of the integrable struc-

tures introduced above [39 – 41, 10]. The symmetry of the ungauged theory is the affine

algebra e9(9) ≡ ê8(8). In this section we will illustrate with a number of examples the general

construction of gaugings in two dimensions starting from the maximal theory. In subsec-

tion 5.2 we describe gaugings that are naturally formulated in the e8 grading of e9(9). These

have a natural interpretation as reductions from three-dimensional supergravity theories.

In subsection 5.3 we describe gaugings in the sl(9) grading of e9, these include the SO(9)

gauging corresponding to an S8 compactification of the ten-dimensional IIA theory as well

as flux gaugings from eleven dimensions. Gaugings with type IIB origin are discussed in

subsection 5.4.

5.1 The basic representation of E9

In order to construct the gaugings of the maximal E8(8)/SO(16) theory the first task is the

choice of representation of vector fields used in the gauging. Extrapolating the represen-

tation structures from higher dimensions it turns out that the relevant representation for

the gauge fields is the basic representation of e9(9), i.e. the unique level 1 representation of

this affine algebra. In the following we will see more specifically that the basic representa-

tion reproduces precisely the structures expected from dimensional reduction; the complete

proof will ultimately have to include consistency with the supersymmetric extension.

Branching the basic representation of e9(9) under e8, the vector fields hence transform

as

basic → 10 ⊕
248−1 ⊕
(1⊕248⊕3875)−2 ⊕
(1⊕ 2·248 ⊕3875⊕30380)−3 ⊕
(2·1 ⊕ 3·248 ⊕ 2·3875 ⊕30380⊕27000⊕147250)−4 ⊕ . . . , (5.1)

where the subscript denotes the L0 charge of the associated Virasoro algebra. The embed-

ding tensor ΘM transforms in the conjugate vector field representation, i.e. its components

carry L0 charges opposite to (5.1). Counting the L0 charge in powers of a variable y, the

character of the basic representation of e9 is given by the famous McKay-Thompson series

χω0(y) = j1/3(y) = 1 + 248 y + 4124 y2 + 34752 y3 + 213126 y4 + 1057504 y5 + . . . , (5.2)

in terms of the modular invariant j(y) [42, 43]. The symmetric product (3.19) takes the

form [44]

χω0(y) ⊗sym χω0(y) = χvir
(1,1)(y)χ2ω0(y) + χvir

(2,1)(y)χω7(y) , (5.3)
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where χ2ω0 and χω7 denote the characters of the level 2 representations starting from a 1

and a 3875 of e8, respectively. As discussed in section 3.3 above, the multiplicities χvir
(1,1),

χvir
(2,1) carry representations of the coset CFT with central charge given by (3.21), which in

this case yields c = 1/2, i.e. the Ising model. Accordingly

χvir
(1,1)(y) = 1 + y2 + y3 + 2y4 + 2y5 + . . . ,

χvir
(2,1)(y) = 1 + y + y2 + y3 + 2y4 + 2y5 + . . . , (5.4)

denote the lowest c = 1/2 Virasoro representations. Consistent gaugings of two-dimensional

maximal supergravity thus correspond to components within the expansion (5.2) such that

their two-fold symmetric product is sitting in a quasi-primary state of (5.4) on the r.h.s.

of (5.3). In principle, all gaugings can be determined this way. In the next subsections we

work out a few examples.

5.2 Gaugings in the E8 grading

According to (3.14), the embedding tensor Θ transforms in the conjugate vector field

representation. It describes the couplings of vector fields to e9(9) symmetry generators

according to (3.2)

Dµ = ∂µ − gAM
µ ΘM

A TA . (5.5)

It is instructive to visualize these couplings as in figure 1. The e9(9) symmetry genera-

tors are plotted horizontally with the L0 charge increasing from left to right, the vector

fields are plotted vertically. The diagonal lines represent the couplings induced by each

component of Θ. The figure shows that every gauging defined by a particular component

of Θ involves only a finite number of hidden and zero-mode symmetries and an infinite

tower of unphysical shift symmetries. As discussed above this implies in particular that

only the finite number of vector fields coupled to the physical symmetries appears in the

Lagrangian.

The simplest gauging in this description is defined by the lowest Θ component in the

basic representation, i.e. by the highest weight singlet 10 in (5.1). According to figure 1

this is a gauging of only shift symmetries. As a consequence, the quadratic constraint is

automatically satisfied as can be seen from its form (3.13), such that this component indeed

represents a consistent gauging. Moreover, as only unphysical symmetries are involved, the

gauging will be invisible in the kinetic and topological part Lkin+Ltop of the Lagrangian. Its

only contribution to the total Lagrangian (4.2) is via the scalar potential V . This gauging

has in fact a simple higher-dimensional origin descending from dimensional reduction of

the three-dimensional maximal ungauged theory [45]. With the ansatz

em
a =

(
δα
µ eλ ρBµ

0 ρ

)
, m, a ∈ {1, 2, 3} , µ, α ∈ {1, 2} , (5.6)

for the three-dimensional vielbein in terms of a conformal factor λ, dilaton ρ and Kaluza-

Klein vector field Bµ, the three-dimensional Einstein field equations give rise to

∂µ(ρ3λ−2∂[µBν]) = 0 , (5.7)
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Figure 1: Couplings induced by different components of the embedding tensor ΘM.

which is solved by ∂[µBν] = ρ−3λ2C ǫµν with a constant C. The ungauged two-dimensional

theory is obtained by setting C = 0. In contrast, keeping a non-vanishing C and thus a non-

vanishing field-strength of the Kaluza-Klein vector field precisely corresponds to the singlet

gauging induced by the lowest components of Θ. In accordance with the above observa-

tions the only effect of C in the Lagrangian is the creation of a scalar potential ρ−3λ3C2

descending from the kinetic term LB ∝ ∂[µBν]∂
µBν . As discussed after equation (2.35)

the effect of this scalar potential is a deformation of the free field equation satisfied by the

dilaton ρ which necessitates gauging of the L1 shift symmetry by the Kaluza-Klein vector

field Bµ. This is precisely the lowest coupling exhibited in figure 1.

At the next level in Θ comes the 2481. According to figure 1, the corresponding

gaugings involve apart from the infinite tower of unphysical symmetries a single generator

of the e8 zero-modes which couples to the Kaluza-Klein vector field. Again one verifies that

the quadratic constraint is automatically satisfied. These are precisely the Scherk-Schwarz

gaugings [46, 47, 5] obtained from three dimensions, singling out one among the generators

of the global symmetry algebra e8 in three dimensions.

At the third level, Θ has three components 12, 2482, 38752. As can be seen from

figure 1, the gaugings induced by the 2482 for the first time involve the hidden symmetries

Tα,−1 coupled to the Kaluza-Klein vector field. Those gaugings described by the 12⊕38752

on the other hand involve only the e8 zero-mode symmetries coupled to the 248−1 vector

fields. These are the theories obtained by dimensional reduction of the three-dimensional

maximal gauged theories described by an embedding tensor in precisely this representa-

tion [4]. For all these theories there is a nontrivial quadratic constraint to be satisfied by

the components of Θ.
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To summarize, all the gaugings with three-dimensional origin are naturally identified

within figure 1. The lowest components of the vector fields in the expansion (5.1) corre-

spond to the Kaluza-Klein vector field 10 and the vector fields 248−1 descending from the

three-dimensional vector fields, respectively. Higher components of the embedding tensor

involve higher hidden symmetries and increasingly nontrivial quadratic constraints. A pri-

ori, it is not clear if there are nontrivial solutions of the quadratic constraint that involve

arbitrarily high components of Θ in the expansion (5.1). The higher-dimensional origin of

the associated gaugings remains to be elucidated.

5.3 Gaugings in the SL(9) grading

By far not all gaugings of two-dimensional maximal supergravity have a natural place in fig-

ure 1. Although all of them can be identified among the components of the expansion (5.2)

of the embedding tensor ΘM, the major part will be hidden at higher levels and in linear

combinations of these components. In some cases it may however be possible to naturally

identify them within other gradings of the affine algebra. As an example we will present in

this section the theory obtained by dimensional reduction of the IIA theory on a (warped)

eight-sphere S8 [48 – 50], which plays a distinguished role in (a low dimensional version

of) the AdS/CFT correspondence [51, 48, 52]. Its gauge group contains an SO(9) as its

semisimple part. Closely related are the compactifications on the non-compact manifolds

Hp,8−p that result in gauge groups SO(p, 9 − p). We will identify the embedding tensors

ΘM that define these theories.

These gaugings are most conveniently described in the sl(9) grading of e9(9). The

intersection of zero-modes of this grading and the e8 grading of the previous section is

given by

e8(8) ∩ sl(9) = sl(8) ⊕ gl(1) . (5.8)

Denoting by ℓe8 and ℓsl9 the charges associated with the e8 and the sl(9) grading, respec-

tively, they are related by

ℓsl9 = ℓe8 + q , (5.9)

where q ∈ 1
3Z is the charge associated with the gl(1) factor in (5.8). E.g. the level ℓ in the

e8 grading of the adjoint representation decomposes as

248ℓ → 8′
ℓ+1 ⊕ 28ℓ+2/3 ⊕ 56′

ℓ+1/3 ⊕ 1ℓ ⊕ 63ℓ ⊕ 56ℓ−1/3 ⊕ 28′
ℓ−2/3 ⊕ 8ℓ−1 ,

under sl(8) where the subscript on the r.h.s. indicates ℓsl9. This shows in particular that

the sl(9) algebra building the zero-modes in this grading is composed out of the 8′, 1⊕ 63,

and 8 with ℓe8 charges −1, 0, and 1, respectively. The adjoint representation in the sl(9)

grading takes the well known form

adj → . . . ⊕ 80−1 ⊕ 84′
−2/3 ⊕ 84−1/3 ⊕ 800 ⊕ 84′

1/3 ⊕ 842/3 ⊕ 801 ⊕ . . . .

(5.10)
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Figure 2: Couplings induced by different components of the embedding tensor ΘM.

Similarly, one computes the form of the basic representation (5.1) in the sl(9) grading

which gives rise to

basic → 9′
0 ⊕

36−1/3 ⊕
126′

−2/3 ⊕
(9′ ⊕ 315)−1 ⊕
(36 ⊕ 45⊕ 720′)−4/3 ⊕ . . . . (5.11)

It is instructive to note that the parts with coinciding (ℓsl9 mod 1) in (5.11) constitute the

three irreducible representations under the ŝl(9) subalgebra of (5.10) (this can be inferred,

for example, from the decompositions given in [53]).

With the vector fields decomposed as (5.11), it is straightforward to identify the eleven-

dimensional origin of the lowest components. These are the Kaluza-Klein vector (9′
0), the

vector fields that originate from the three-form (36−1/3) and the vector fields coming

from the dual six-form (126′
−2/3) of eleven-dimensional supergravity. A priori, a possible

eleven-dimensional origin of the higher components remains unclear. Note however, that

we have already identified a higher-dimensional origin for different vector fields than in

the reduction from three dimensions discussed in the previous section. Analysis of more

complicated dimensional reductions may disclose a higher-dimensional origin of yet other

vector fields within the basic representation of e9(9).

The embedding tensor ΘM transforms in the conjugate vector field representation.

Accordingly, we may try to identify the gaugings associated with the various components of

Θ in the expansion conjugate to (5.11). The induced couplings are schematically depicted in
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figure 2. Similar to the discussion in the previous section, the lowest components 90, 36
′
1/3,

1262/3 correspond to nontrivial fluxes associated with the vector fields in the reduction from

eleven dimensions. As manifest in the figure, these gaugings involve only shift symmetries

in the sl(9) grading.

We will be interested by the gaugings induced by the 45′
4/3. With a little effort one may

show that an embedding tensor in this representation automatically satisfies the quadratic

constraint (3.13). Namely, working out the couplings induced by this 45′
4/3 in figure 2, it

follows from the sl(9) representation structure that the lowest symmetry generators which

are involved in the gauging are sitting in the 800, the 842/3, and the 801. In particular,

the latter couple only to the 45−4/3 of the vector fields.13 The form of the quadratic

constraint (3.13) then shows that its only nontrivial contribution can sit in the component

where M and N take values in the 36′
1/3 and the 45′

4/3, respectively, i.e. live in the sl(9)

tensor product 36′ ⊗ 45′ = 630′ ⊕ 990′. Since there is no overlap with the representations

actually present in the square of this embedding tensor (45′ ⊗sym 45′ = 495′ ⊕ 540′), the

quadratic constraint is automatically satisfied. We have thus shown that an embedding

tensor in the 45′
4/3 defines a consistent gauging in two dimensions. This representation can

be parametrized by a symmetric 9 × 9 matrix Y . By fixing part of the SL(9) symmetry

this matrix can be brought into the form

Y = diag( 1, . . . ,︸ ︷︷ ︸
p

−1, . . . ,︸ ︷︷ ︸
q

0, . . .︸ ︷︷ ︸
r

) , (5.12)

with p + q + r = 9. Such an embedding tensor gauges a subalgebra cso(p, q, r) of the

zero-mode algebra sl(9) in (5.10). The corresponding gauge fields come from the 36−1/3.

For r = q = 0 this is the SO(9) gauging corresponding to the IIA S8 compactification

mentioned above. In addition there is the infinite tower of shift-symmetries accompanying

this gauging, starting from the full 84+2/3, a 44 inside the 80+1, etc.

It is instructive to visualize this SO(9) gauging within the e8 grading of figure 1. In that

table, the SO(9) singlet component of Θ which defines the gauging is a linear combination

of the two SO(8) singlets appearing in the branching of the 38752 and the 1472504 under

SO(8). In the e8 grading this gauging thus involves a number of hidden and zero-mode

symmetries. More precisely, the gauge group appearing in the Lagrangian (4.2) is of the

non-semisimple form

G = SO(8) ⋉

(
(R28

+ × R
8
+)0 × (R8

+)−1

)
, (5.13)

with the (R28
+ × R

8
+)0, and (R8

+)−1 corresponding to zero-mode symmetries and hidden

symmetries from level −1, respectively. From this perspective it is thus not at all obvious

that an SO(9) gauge group is realized. Instead, the “off-shell gauge group” involves the

maximal Abelian (36-dimensional) subalgebra of the zero-mode e8.

13This can be seen as follows. According to (3.2) and (3.14) the vector fields couple to generators as

AM
µ (TB,M

N ηAB ΘN ) TA. Since ηAB is invariant under L1, indices in the range A ∈ 801 couple to B ∈ 800,

i.e. in this case TB is just the SL(9). Since (5.11) is a decomposition into irreducible SL(9) components and

the indices ’N ’ are in the range N ∈ 45
′
4/3 (as this is the only non-vanishing Θ-component) the range of

indices ’M’ is restricted to M ∈ 45−4/3.
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5.4 Other gradings

The SO(9) example presented in the last section already shows that particular gaugings

may be far more transparent within one grading than within another. It will thus be

interesting to analyze the gaugings manifest in the different gradings of e9(9). A table of

the 112 maximal rank subalgebras of e8 corresponding to the zero-mode algebras in the

different gradings can be found in [54]. Of particular interest may be the so(8, 8) grading

giving rise to a decomposition

adj → . . . ⊕ (128s)−1/2 ⊕ 1200 ⊕ (128s)1/2 ⊕ 1201 ⊕ . . . ,

basic → 160 ⊕
(128c)−1/2 ⊕
(16 ⊕ 560)−1 ⊕
(128c + 1920s)−3/2 ⊕ . . . , (5.14)

of the adjoint and the basic representation, respectively. This grading is particularly

adapted to identify the transformation behavior of the different Θ components (e.g. fluxes,

twists, etc.) under the SO(8, 8) duality group.

Another grading of interest is the one w.r.t. sl(8) × sl(2)

adj → . . . ⊕ (28′,2)−1/4 ⊕ ((63,1)⊕(1,3))0 ⊕ (28,2)1/4 ⊕ (70,1)1/2

⊕ (28′,2)3/4 ⊕ ((63,1)⊕(1,3))1 ⊕ . . . ,

basic → (8′,1)0 ⊕
(8,2)−1/4 ⊕
(56,1)−1/2 ⊕
(56′,2)−3/4 ⊕
((8′,1 ⊕ 3) ⊕ (216,1))−1 ⊕
((216′,2) ⊕ 2·(8,2))−5/4 ⊕ . . . , (5.15)

related to the ten-dimensional IIB theory, with sl(8) and sl(2) reflecting the torus T 8 and

the IIB symmetry, respectively. By regarding the representation content, it is easy to

verify that the lowest entries of the basic representation in this grading correspond to the

gaugings induced by IIB p-form and geometric fluxes on T 8.

6. Conclusions and outlook

In this paper, we have presented the construction of gaugings of two-dimensional supergrav-

ity. We have shown how to consistently gauge subalgebras of the affine global symmetry

algebra G of the ungauged theory by coupling vector fields in a highest weight repre-

sentation of the affine algebra with a particular topological term (3.9). The gaugings are

described group-theoretically in terms of a constant embedding tensor ΘM in the conjugate
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vector representation and subject to the quadratic consistency constraint (3.15). This ten-

sor parametrizes the different theories, defines the gauge algebra and entirely encodes the

gauged Lagrangian (4.2). The resulting gauge algebras are generically infinite-dimensional

and include hidden symmetries which are on-shell and not among the target-space isome-

tries of the ungauged theory. Yet, only a finite part of the gauge symmetry is realized

on the Lagrangian level (with its infinite-dimensional tail exclusively acting on dual scalar

fields that are not present in the Lagrangian) and only a finite number of gauge fields

enters the Lagrangian. As a main result, we have shown that the total Lagrangian (4.2) is

invariant under the action (3.25), (3.31) of the local gauge algebra. In absence of a scalar

potential, particular gauge fixing shows that the gauging, merely amounts to a (T-dual)

reformulation of the ungauged theory. A scalar potential on the other hand induces a

genuine deformation of the original theory. We have worked out a number of examples

for maximal (N = 16) supergravity in two dimensions which illustrate the structure of the

gaugings. In particular, we have discussed the gaugings corresponding to those components

of the embedding tensor with lowest charge with respect to several gradings of e9(9) which

allow for a straightforward higher-dimensional interpretation.

The presented construction opens up a number of highly interesting questions con-

cerning its applications as well as possible generalizations. E.g. we have motivated the

particular ansatz (3.14) for the embedding tensor by the observation that it reduces the

quadratic consistency constraints (3.3) and (3.13) to the same equation (3.15). Moreover,

it seems in line with the findings in higher-dimensional theories that the embedding ten-

sor transforms in the dual representation of the (D − 1)-forms in a given dimension D.

Yet, it would be interesting to study, if the present construction could be generalized to

more general choices of the embedding tensor. A related question is the particular choice

of the vector field representation. While the general bosonic construction seems to yield

no preferred representation for the gauge fields (and thus for the embedding tensor) it is

presumably consistency with the supersymmetric extension that puts severe constraints on

this choice.

The analysis of this paper has been performed for a general two-dimensional bosonic

coset space sigma-model. Above all, it remains to extend the presented construction to the

fermionic sector of the various supersymmetric theories. Of particular interest is the max-

imal (N = 16) supergravity theory. As the integrable structures of the ungauged bosonic

theory naturally extend to the full theory [40, 41, 10] the construction should straightfor-

wardly extend. In particular, this should elucidate the role of the basic representation which

we have found relevant for the maximal theory. The construction will fix the fermionic mass

terms and yield the specific form of the scalar potential. A crucial ingredient will be the

representation structure of the infinite-dimensional subalgebra k(e9) of e9(9) under which

the fermions transform [25, 55, 56]. What we have only started in section 5 of this pa-

per is the study of the various resulting two-dimensional theories; this analysis needs to

be addressed systematically and completed. In particular, at present it remains an open

question if among the infinitely many parameters of the embedding tensor — combining

higher-dimensional fluxes, torsion, etc. — there remain infinitely many inequivalent so-

lutions of the quadratic constraint (3.15). Likewise, it will be interesting to analyze the
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possible higher-dimensional origin of higher-charge components of the embedding tensor in

the various gradings.

Finally, we have seen in this paper and in particular in the examples discussed, how

the algebraic structures exhibited in higher-dimensional maximal gaugings are naturally

embedded into infinite-dimensional representations of the affine algebra e9(9). E.g. figure 1

shows how the general formulas of this paper can reproduce in particular all the properties

and constraints of maximal three-dimensional gaugings. It is moreover interesting to note

that reducing in dimensions, the two-dimensional theory is the first one in which the

global (and subsequently gauged) symmetry ed(d) combines — via the central extension

of e9(9) — an action on the scalar matter sector with an action on the (non-propagating)

gravitational degrees of freedom. It would be highly interesting to identify the higher-

dimensional ancestor of this mechanism.14 From this unifying point of view, it would of

course be of greatest interest to push the construction of gauged supergravities further

down to even lower dimensions, embedding these structures into the group theory of the

exceptional groups E10 [39, 59] and E11 [60 – 62].
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A. The algebra G — useful relations

The algebra G extending the affine algebra ĝ by L1 is generated by generators Tα,m, L1,

K , with commutation relations

[ Tα,m , Tβ,n ] = fαβ
γ Tγ,m+n + m δm+n ηαβ K ,

[L1, Tα,m ] = −m Tα,m+1 , (A.1)

and all other commutators vanishing. We parametrize an arbitrary algebra element as

Λ = ΛA TA = Λα,m Tα,m + Λ(1) L1 + Λ(0) K ≡ Λ(w) + Λ(1)L1 + Λ(0) K , (A.2)

with Λ(w) ≡ Λα,mw−m tα, such that the commutators (A.1) translate into

|[ Λ,Σ ]| = [Λ(w),Σ(w)] + Λ(1)∂Σ(w) − Σ(1)∂Λ(w) + K
〈
Λ(w) ∂Σ(w)

〉
w

, (A.3)

14The explicit form of (3.16) suggests that in higher dimensions this corresponds to gaugings defined

by an embedding tensor of the particular form ΘM
A = ηABtB,M

NθN , ΘM
0 = θM , parametrized in terms

of a θM in the conjugate vector field representation, where the global symmetry algebra 〈tA〉 has been

extended by the generator t(0) defining the global (on-shell) scaling symmetry of metric and p-forms. These

theories have not yet been considered in [4, 5] and belong to the class of supergravities without actions

whose nine-dimensional members have been studied in [57].

It is also interesting to note that similar structures occur in dimensional reduction including the higher

Kaluza-Klein modes [58].

– 33 –



J
H
E
P
0
8
(
2
0
0
7
)
0
7
6

and the invariant bilinear form (2.38) is given by

(
Λ,Σ

)
= tr

〈
Λ(w)Σ(w)

〉
w
− Λ(1)Σ(0) − Σ(1)Λ(0) . (A.4)

Strictly speaking, we will consider only such elements Λ ∈ G for which almost all

{Λα,m |m < 0} are equal to zero, i.e. for which the power series Λ(w) has only a finite

number of positive powers.

For a general power series f(w) =
∑∞

m=−∞ fmwm with almost all {fm |m > 0} equal

to zero, one proves the relation

〈
f(v)

v − w

〉

v

=

〈∑

m≥0

f(v)wm

vm+1

〉

v

=
∑

m≥0

fmwm . (A.5)

Another relation that we will repeatedly make use of is

〈〈f(w, v)

v − w

〉
v

〉
w
−

〈〈f(w, v)

v − w

〉
w

〉
v

= 〈f(w,w)〉w . (A.6)
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[34] P. Fré, F. Gargiulo, K. Rulik and M. Trigiante, The general pattern of Kac Moody extensions

in supergravity and the issue of cosmic billiards, Nucl. Phys. B 741 (2006) 42

[hep-th/0507249].

[35] C. Klimč́ık and P. Ševera, Dual nonabelian duality and the Drinfeld double, Phys. Lett. B

351 (1995) 455 [hep-th/9502122].
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